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Abstract. We examine the equilibria of a rigid loop in the plane, characterized by an energy functional
quadratic in the curvature, subject to the constraints of fixed length and fixed enclosed area. Whereas
the only non self-intersecting equilibrium corresponding to the fixed length constraint is the circle, the
area constraint gives rise to distinct equilibria labeled by an integer. These configurations exhibit self-
intersections and bifurcations as the area is reduced. In addition, not only can the Euler-Lagrange equation
be integrated to provide a quadrature for the curvature but the embedding itself can be expressed as a
local function of the curvature. Perturbations connecting equilibria are shown to satisfy a first order ODE
which is readily solved. Analytical expressions for the energy as a function of the area are obtained in the
limiting regimes.

PACS. 46.70.Hg Membranes, rods and strings – 87.16.Dg Membranes, bilayers, and vesicles

1 Introduction

Consider a closed planar loop with an elastic energy den-
sity proportional to the square of its curvature. If we fix
the length of this loop the equilibria are well known [1].
There is a unique configuration for each value of the wind-
ing number m associated with the rotation of its normal:
the obvious ones consisting of the circle and its multiple
coverings, as well as the figure of eight (m = 0). Suppose,
in addition, that we fix the area enclosed by the loop to
lie below its circular value (hence the term hypoarealis).
What are then its equilibria? The characterization of these
equilibria is a subtle issue with several surprises: while it
has been known for a long time that the Euler-Lagrange
equation is integrable to provide a quadrature for the cur-
vature [2], we find that the position vector X describing
the embedding of the curve in the plane is also a local
function of the curvature; the closure of the loop quantizes
the energy parameter associated with the quadrature and
determines the curvature.

In particular, as the enclosed area is reduced, how does
the circular equilibrium deform? One finds that there is
an infinite number of configurations with an n-fold sym-
metry, n = 2, 3, . . . For each n there is a critical area
below which the configuration self-intersects; there is also
a limiting area below which the equilibrium is impossible.
In addition, there are configurations which bifurcate from
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a complicated limiting shape which cannot be deformed
into a circle. A detailed analysis is provided in [3]. The
problem we address is relevant to the study of polymers
and membranes as well as solitons.

2 Euler-Lagrange equation and scaling

The energy functional that implements the constraints is

Fc =
∫

d�

(
k2 + µ +

1
2
σn ·X

)
. (1)

Here k is the geodesic curvature of the loop, � is the ar-
clength, n is the normal to the loop and µ, σ are La-
grange multipliers. In terms of the normal component ε
of a small variation δX, the variation of the curvature is
δεk = −ε′′ − k2ε, which leads to the Euler-Lagrange equa-
tion

2k′′ + k3 − µk − σ = 0 ; (2)

the prime indicates a derivation with respect to arclength.
This equation may be recast as k′′ = −dV (k)/dk, where
V (k) = k4/8 − µk2/4 − σk/2. Thus, with � identified as
time, its solutions can be identified with the motion of a
particle (with position k) in a quartic potential. The en-
ergy E of this particle (not to be confused with the elastic
energy) is conserved along the loop; k(�) is determined by
the elliptic integral,

� =
∫

dk[2(E − V (k))]−1/2. (3)
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Fig. 1. The angle Θ0, as defined by equation (4), vs. Ē ≡ (E − V (K+))/µ2
0, for various values of µ̄ ≡ µ/µ0. Also shown, with

horizontal dashed lines, are some of the values of Θ0 that give rise to closed configurations. The corresponding values of Ē can
be read off as in the case µ̄=0.5, n=2 shown. Notice how the µ̄ = −1, −2.5 curves miss the n = 2, n = 2, 3, 4 configurations
respectively.

One would then expect the determination of the position
vector X(�) to involve two further integrations. It is re-
markable, as we will discuss below, that no further inte-
grations are necessary.

Scaling may be exploited to reduce the two dimen-
sional parameter space (σ, µ) by one. If X is a solution
then λX is also a solution if the parameters are rescaled
as (σ, µ) → (λ−3σ, λ−2µ). Moreover, if λ = −1, then the
inversion X → −X produces a solution with the sign of σ
flipped. Thus, we need only to consider σ > 0. Until fur-
ther notice we will set σ = 1.

3 Closure

The particle analogue is only one part of the story. We
still need to implement the closure of the loop. For each
value of µ this condition will quantize the energy E.

Consider one complete oscillation of the particle in the
potential falling from its maximum down to its minimum
and back. The corresponding angle Θ0, by which the nor-
mal vector is rotated, is then given by

Θ0(E, µ) = 2
∫

d� k = 2
∫ kmax

kmin

k dk√
2(E − V )

· (4)

Closure requires that

Θ0 = 2πm/n , (5)

where m ∈ Z∗ and n = ±2,±3, · · · (n = ±1 is excluded
by the four-vertex theorem). The values m �= ±1 give

rise to configurations that self-intersect necessarily. The
figure possesses an n-fold axis of symmetry with a well
defined center. The value n can be identified with the
winding number associated with orbits on the phase plane.
There are thus two periodicities intrinsic to this problem
which are labelled by n and m. We will confine ourselves
to m = 1.

We need to determine (i) the functional form of
Θ0(E, µ); (ii) those values of E, for each fixed value µ, sat-
isfying the quantization condition. This will then fix k(�)
as determined by equation (3).

3.1 Θ0(E, µ)

We begin with a qualitative description of Θ0(E, µ) (refer
to Fig. 1). If E is large, the linear term in the potential is
irrelevant and the approximate symmetry k → −k implies
that Θ0 ≈ 0; closure will only be possible for large values
of n. On the other hand, when E is small the details at the
bottom of the potential become important; we distinguish
between the case µ < µ0 = 3/22/3 where the potential
possesses a single minimum at k+ > 0 (with energy E+),
and µ > µ0 where a second minimum appears, at k− <
0, with a higher energy E−. In the latter range µ, for
values of E lying between E− and the energy of the central
maximum of V (k), the function Θ0 will have two values,
one for each well.

All configurations which correspond to oscillations in
the left well self-intersect. While this branch is undoubt-
edly of mathematical interest, we will ignore it in this
paper.
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Fig. 2. Bifurcations: as µ̄ is reduced, the minimum of the curve
shifts upwards and B1, B2 collapse to a point. Further decrease
of µ̄ forces B′

1, B′
2 to collapse to a point. The corresponding

configurations cannot be continuously deformed to a circle.

In general, Θ0 ranges from some positive value at
E = E+ to zero as E → ∞. E = E+ is a global maximum
of this function. The behavior at intermediate values will
depend on µ. For low values of µ, Θ0 is a monotonically
decreasing function of E. There is a critical value µc at
which a local minimum appears in Θ0 (note that µc < µ0),
as sketched in Figure 2. As µ is increased further, this
minimum progressively deepens. Above µ0 the minimum
transforms into a pole at the energy of the central maxi-
mum of V (k) (see Fig. 1).

3.2 The energy spectrum

Now let us return to address the quantization condition,
equation (5).

There exists a set of configurations labeled by n =
2, 3, · · · which are continuously deformable into a circle. A
quadratic approximation of the potential can be exploited
to obtain

Θ0(E+, µ) = 2
√

2π(3 − µ/k2
+)−1/2, (6)

where k+ is the positive root of k3−µk−1 = 0. In particu-
lar, we note that as µ increases from −∞ to ∞, Θ0(E+, µ)
increases monotonically from zero to 2π. This implies that
there is a sequence of values µ2 > µ3 > µ4 . . . , such that
when µ = µn, the configuration of order n first occurs as a
circle. Below µn it does not occur; above it it deforms con-
tinuously, becoming self-intersecting at some point. Such
a sequence is illustrated in Figure 3 for n = 2. We note
also that a limiting configuration exists for each n consist-
ing of an (n−1)-fold covering of the circle decorated with
n small circles.

Above µc a new set of solutions appears in the spec-
trum. As µ increases, the minimum of Θ0 will cross the
critical values of equation (5) for increasing values of n.
A pair of configurations bifurcate from a single one (see
Fig. 2). The number of configurations diverges as the min-
imum of Θ0 falls to zero. As Θ0 passes through zero a new

Fig. 3. Evolution of a n = 2 configuration under deflation
(sketch). The central region in the third configuration, as well
as the big circle in the fourth one, contribute negative area.

set of configurations with large negative values of n ap-
pear, with all orders appearing as µ increases towards µ0.
These exotic configurations are self-intersecting and are
not deformations of a circle.

4 The embedding

Consider two solutions of equation (2), corresponding to
(µ, σ), (µ+δµ, σ+δσ). The normal displacement ε ≡ δX·n
connecting them, satisfies the fourth order ODE

DE(ε) = −kδµ − δσ , (7)

where DE(ε) = 2ε′′′′ + (5k2 − µ)ε′′ + 10kk′ε′ + (12E −
σk4/2 + 6µk2 + 10σk)ε. The linear operator DE pos-
sesses three zero modes corresponding to the three
Euclidean motions on the plane: two independent transla-
tions δX = a with ε = a ·n and a rotation δX = ω×X, so
that ε is proportional the tangential projection of X, X ·t.
An infinitesimal dilatation of the loop with ε proportional
to the projection of X onto the normal, X · n, also sat-
isfies equation (7) with appropriate values of δσ and δµ.
The normal and the tangential components of X together
describe the configuration completely. They both satisfy
equation (7). Are there any other solutions? We find that
DE(k′) = 0 and DE(k2 − µ) = 2µσK + 3σ2. One would
not expect two new independent solutions. In fact, one
can prove that X ·n = σ−1(k2−µ) and X · t = 2σ−1k′ for
all closed configurations centered at X = 0. We note that
these identifications become singular in the σ → 0 limit,
i.e., when the area constraint is relaxed.

An immediate geometrical consequence is that

X2 − X2
0 = 4σ−1k , (8)

where X0 = σ−1(8E + µ2)1/2. This remarkable identity
provides a geometrical construction of the curve once k
is specified as a function of �. It is worth remarking that
an alternative derivation of this result is obtained in the
context of the local induction hierarchy by Langer [4]. A
further consequence is that ε, in fact, satisfies the first
order ODE,

4k′ε′ − 4k′′ε = c2k
2 + c1k + c0 , (9)

with the three constants linear in δσ, δµ and δE. This
equation is three orders lower in derivatives than (7) and
is readily integrated to give

ε(k) =
1
4
k′

∫
dk

c2k
2 + c1k + c0

[2(E − V )]3/2
· (10)
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5 Self-intersections

It is desirable to have a condition that excludes self-
intersecting configurations. We consider here only
self-intersections that can be reached by continuous
deformation of non-self-intersecting configurations. We
call a “kiss” the point of contact (but not self-crossing)
of a curve that bends on itself. At a kiss we have that
X · n = σ−1(k2 − µ) = 0, from which we find

k = −√
µ (11)

at a kiss. Therefore, a sufficient condition for non-self-
intersection is µ < 0.

6 F vs. A for fixed L

The total elastic energy F , as a function of the enclosed
area A, for a fixed perimeter L, may be obtained by inter-
polating between the two limiting regimes where we pos-
sess analytical expressions. We begin by examining the
behavior of F for a perturbed circle. We have, in gen-
eral, at a circular equilibrium, dV/dk = 0 which implies
R2µ + R3σ = 1, with R = k−1. Equations (5, 6) imply
σ = 2(n2 − 1)/R3 for a deformation of a circle of or-
der n. It can be shown that, for a fixed length L = 2πR,
∂F/∂A = −σ. Thus

F ≈ 2π

R
− 2(n2 − 1)

R3
(πR2 − A) . (12)

At the limiting geometry with n small circles, F possesses

a pole at A = −πR2/(n − 1). The residue is determined
by the n decorating circles

F ≈ 4πn2

R

1
1 + (n − 1) A

πR2

· (13)

7 Concluding remarks

We have examined the configuration space for elastica hy-
poarealis. It is remarkable how this simple geometrical
problem offers an enormous richness of configurations and
a few surprises along the way. One important issue is the
stability of these configurations. It appears that at least
the non-self-intersecting configurations are stable, but a
full answer will have to wait further work.
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